Stereoselective Alkylation of Dianions derived from Chiral Half-Esters of Monosubstituted Malonic Acids: Asymmetric Synthesis of α-Alkyl α-Amino Acids and Key Synthetic Intermediates for Hunteria and Aspidosperma Indole Alkaloids

Masataka Ihara, Masanobu Takahashi, Nobuaki Taniguchi, Ken Yasui, Hiroko Niitsuma and Keiichiro Fukumoto* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract

Substitution of the chiral half-esters of monosubstituted malonic acids with halides leads to the formations of mixtures of the diastereoisomeric alkyl- or benzyl-malonic half-esters. The (R)-isomers (13A and 15A-22A) were obtained from the phenylmenthyl half-ester 14 of methylmalonic acid in high diastereoisomeric excess. The same stereoisomers were also produced by reaction of the half-esters 9, 23 and 24 with methyl iodide. Their absolute configurations were determined by transforming the major products into the known α-alkyl α-amino acid derivatives 30,33 and 35 . The major product 43, prepared by allylation of the half-ester 9, was converted into two lactones 41 and 42, key intermediates for synthesis of indole alkaloids of the Hunteria and Aspidosperma types. The mechanism of the above alkylation is discussed.

Recently we developed a new methodology for the synthesis of optically pure chiral propane-1,3-diols from monosubstituted malonic acids, with the possibility of obtaining high enantioselection due to crystallisation-induced asymmetric transformation at the chiral half-esters stage. ${ }^{1,2}$ As a further extension of this study, the kinetically controlled alkylation of chiral halfesters $\mathbf{3}$ of monoalkylmalonic acids (Scheme 1) was investigated, with the expectation of diastereoselective construction of a quaternary asymmetric centre (as shown in structure 2). The stereoselective transformation of prochiral malonic acids into unsymmetrical molecules would appear to be one of the favourite methods for providing versatile chiral building blocks ${ }^{3}$ in the organic synthesis of biologically active compounds. While this type of asymmetric synthesis is common in enzymatic conversions, ${ }^{4}$ examples of its use in chemical transformation are rare. ${ }^{5}$ We now describe an efficient synthesis of chiral precursors 1 possessing a quaternary carbon centre with high optical purity, and their transformation into α-alkyl α-amino acids and synthetic intermediates for indole alkaloids. ${ }^{6}$

Scheme 1 Strategy for construction of a quaternary asymmetric centre

Results and Discussion

Reaction of Dianions with Alkyl Halides.-It was considered that dianions derived from chiral half-esters 3 of monosubstituted malonic acids were strong nucleophiles and would react, in a diastereoselective manner, with alkyl halides. First, conditions for the methylation of ($1 R, 3 R, 4 S$)-p-menthan-3-yl hydrogen isopropylmalonate 4 with a variety of bases were examined. With excess of a lithium base, such as lithium diisopropylamide (LDA) or lithium hexamethyldisilazide (LHMDS), a dianion smoothly formed at $-78^{\circ} \mathrm{C}$ in dry tetrahydrofuran (THF) and reacted with methyl iodide at the same temperature to produce, in excellent yield, a mixture of
two diastereoisomers 5 in the ratio 2.4:1 (Table 1). There was no fundamental difference in results between LDA and LHMDS. The ratio of the two diastereoisomers was decreased by addition of hexamethylphosphoramide (HMPA); this indicated the operation of an intramolecular chelation effect. The presence of metal ions such as copper(I) did not effect any improvement of either yield or selectivity. Therefore the alkylations shown in Table 1 were carried out using an excess of LDA in dry THF. The ratios of the two epimers formed were determined by ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectroscopy.

Next, the effect of chiral auxiliaries on the selectivity between the two stereoisomers was investigated as shown in Table 2. Among α-phenylethyl alcohol, 2-(1-naphthyl)-3-borneol, ${ }^{7}$ menthol and 8 -phenylmenthol, ${ }^{8}$ the last compound gave the best selectivity on methylation of ethylmalonic acid. Therefore 8-phenylmenthol was chosen as the chiral auxiliary for the present work.

The dianion derived from 8-phenylmenthyl hydrogen methylmalonate 14 was allowed to react with number of alkyl halides as shown in Table 3. Reactions with ethyl iodide and propyl iodide at $-25^{\circ} \mathrm{C}$ for 10 h afforded two diastereoisomers in the ratio $4: 1$. Treatment with allyl iodide or with methallyl iodide (2-methylprop-2-enyl iodide) at $-78^{\circ} \mathrm{C}$ for 12 h yielded a mixture of two isomers in the ratio $7: 1$ and $6: 1$, respectively. Reactions with benzyl bromide and analogues were carried out at $-25^{\circ} \mathrm{C}$. The ratios of the two stereoisomers ranged between 8:1 and 16:1.

Reactions of the phenylmenthyl half-esters 9,23 and 24 of ethyl-, propyl- and benzyl-malonic acid with methyl iodide at $-78^{\circ} \mathrm{C}$ furnished a mixture of two diastereoisomers in the ratio of $5: 1,5: 1$ and $15: 1$, respectively (Table 4). It was unexpectedly found that the same stereoisomers (A) were produced as major products, with similar selectivity, both on alkylation of the methylmalonate 14 and on methylation of the alkylmalonates. The structure of the products was assigned by conversion of the major products into known compounds as discussed in the following section. The substrates for the substitution reaction were prepared by condensation of monosubstituted malonic acids with 8-phenylmenthol in the presence of dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP), ${ }^{1}$ except for the half-ester 24 of benzylmalonic acid. The half-ester $\mathbf{2 4}$ was synthesized by

Table 1 Methylation of ($1 R, 3 R, 4 S$)-p-menthan-3-yl hydrogen isopropylmalonate

	Entry	Conditions	Yield (\%)	Ratio of two diastereoisomers
	1	LDA, THF,$-78{ }^{\circ} \mathrm{C}$	87	$2.4: 1$
	2	LHMDS, THF $-78{ }^{\circ} \mathrm{C}$	87	$2.4: 1$
	3	LDA, THF, $\mathrm{HMPA},-78{ }^{\circ} \mathrm{C}$	83	$1.4: 1$
	LDA, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}, \mathrm{THF},-7{ }^{\circ} \mathrm{C}$	52	$1.5: 1$	

Table 2 Methylation of chiral half-esters of ethylmalonic acid

2

3

89
2:1 12

4

980
5:1 13
condensation of 8-phenylmenthol with malonic acid, followed by benzylation of the acid 25 in the presence of LDA (Scheme 2).

Scheme 2 Reagents: i, $\mathrm{HO}_{2} \mathrm{CCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, DCC, DMAP; ii, LDA, $\mathrm{PhCH}_{2} \mathrm{Br}$

Transformation of the Acids into Known Compounds: Asymmetric Synthesis of α-Akyl α-Amino Acids.-The product 13, obtained by the reaction of the half-ester 14 of methylmalonic acid and ethyl iodide, in the ratio $4: 1$, was converted into the homologous methyl ester 26 by ArndtEistert reaction, namely chlorination with oxalyl dichloride, reaction with diazomethane and treatment with silver(I) benzoate in methanol. After separation of two diastereoisomers by high-performance liquid chromatography (HPLC), the

Table 3 Alkylation of ($1 R, 3 R, 4 S$)-8-phenyl- p-menthan-3-yl hydrogen methylmalonate 14

	14		
Entry	RX	Yield $(\%)$	Ratio of two diastereoisomers
1	Etl	83	4:1 13A and 13B
2	Pr I	72	4:1 15A and 15B
3	$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{I}$	77	7:1 16A and 16B
4	$\mathrm{CH}_{2}=\mathrm{CMeCH}_{2} \mathrm{I}$	91	6:1 17A and 17B
5	Benzyl bromide	72	12:118A and 18B
6	2-Nitrobenzl bromide	94	10:1 19A and 19B
7	4-Nitrobenzyl bromide	95	8:1 20A and 20B
8	4-Methoxybenzyl bromide	71	12:121A and 21B
9	2-Methoxybenzyl bromide	73	16:122A and 22B

Table 4 Methylation of ($1 R, 3 R, 4 S$)-8-phenyl- p-menthan-3-yl hydrogen monoalkylmalonates

major ester 26 was reduced with lithium aluminium hydride (LAH), and the resulting diol was treated with p-nitrobenzoyl chloride in the presence of pyridine and DMAP. Comparison of the specific rotation, $[x]_{\mathrm{D}}^{24}-1.93^{\circ}\left(c 1.52, \mathrm{CHCl}_{3}\right)$ of the product, m.p. $154^{\circ} \mathrm{C}$, with that of the authentic $(R)-(-)$-isomer $27\left\{\right.$ lit., ${ }^{9}[x]_{\mathrm{D}}^{20}-1.8^{\circ}\left(c 3.3, \mathrm{CHCl}_{3}\right)$; m.p. $\left.154^{\circ} \mathrm{C}\right\}$, determined the (R)-configuration of the major product (Scheme 3).

Scheme 3 Reagents: i, $(\mathrm{COCl})_{2}$; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; iii, $\mathrm{AgOCOPh}, \mathrm{MeOH}$; iv, LAH; v. p-nitrobenzoyl chloride, pyridine, DMAP

Scheme 4 Reagents: $\mathrm{i},(\mathrm{PhO})_{2} \mathrm{PON}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhCH}_{2} \mathrm{OH}$; ii, $\mathrm{Pd}-\mathrm{C}$, cyclohexene; iii, $\mathrm{KOH}, 18$-crown- 6 ; iv, $\mathrm{HCl}, \mathrm{EtOH} ; \mathrm{v}, \mathrm{EtO}_{2} \mathrm{CCH}_{2} \mathrm{COCl}$, DMAP; vi, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$; vii, $\mathrm{HCl}, \mathrm{MeOH} ;$ viii, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP

The 5:1 mixture of compounds $\mathbf{1 3}$, produced by reaction of the half-ester (9) of ethylmalonic acid with methyl iodide, was subjected to Curtius-type rearrangement. ${ }^{10}$ The urethane 28, obtained in 86% yield, was deprotected by hydrogenolysis with 10% palladium on carbon and cyclohexene in hot ethanol. The major amine 29, separated by reverse-phase HPLC, was converted into the amide $\mathbf{3 0}$ by the successive hydrolysis of the ester group with potassium hydroxide in the presence of 18 -crown-6, esterification with ethanolic hydrogen chloride, and finally reaction with ethyl (chloroformyl)acetate in the presence of DMAP. Comparison of the specific rotation $[x]_{\mathrm{D}}^{20}+5.3^{\circ}$ ($c 0.86$, benzene) of the amide 30 with the reported data, ${ }^{11}[x]_{D}^{20}$ $+5.0^{\circ}(c .2 .096$, benzene $)$ of the $(S)-(+)$-isomer 30 indicated the (S)-configuration of our product 30 (Scheme 4).

The major components of the product 15 , obtained by two reactions, (i) methylation of the half-ester (23) of propylmalonic acid and (ii) propylation of the half-ester (14) of methylmalonic acid, were identical with the major product from the hydrogenation of half-ester 16, prepared by the reaction of half-ester 14 with allyl iodide. Curtius-type reaction of compound 15 , followed by hydrogenolysis of the resulting urethane 31 and HPLC separation, produced the major amine 32. Hydrolysis of the phenylmenthyl ester group of compound 32, followed by esterification (methanolic hydrogen chloride), furnished the amino ester 33. The (S)-configuration of our product 33 was determined by its specific rotation, $[\alpha]_{D}^{28}+13.37^{\circ}(c 0.70$, $\mathrm{EtOH})\left\{(\mathrm{R})-(-)\right.$-isomer: lit., ${ }^{12}[x]_{\mathrm{D}}-13.0^{\circ}(c$ 1.5, EtOH $\left.)\right\}$ (Scheme 4).

The half-esters 18, obtained by benzylation of compound 14, were similarly converted into urethanes, whose HPLC separation gave the major compound 34, which was transformed into the acetamide 35 . On the basis of its specific rotation, $[\alpha]_{\mathrm{D}}^{27}+49.20^{\circ}\left(c 0.56, \mathrm{CHCl}_{3}\right)\left\{(R)-(-)\right.$-isomer: lit., ${ }^{13}$ $\left.[\alpha]_{\mathrm{D}}-47.8^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)\right\}$, the absolute configuration of our product 35 was assigned as (S) (Scheme 4).

The above transformations not only established the stereochemistry of the major products, but also provided an efficient route to α-alkyl α-amino acids, the subject of much attention in the biological community. ${ }^{14}$

9

36

37

Scheme 5 Reagents: i, LDA, $\mathrm{PhCH}_{2} \mathrm{Br}$; ii, LDA, EtI; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$
Mechanism of Substitution Reactions.-The above unexpected results, the formation of the same major products on alkylation in both sequences, may be due to alkylation at different conformations of dianions. It is interesting that the major product, formed by the benzylation of the half-ester (9) of ethylmalonic acid, was different from that obtained by ethylation of the half-ester (24) of benzylmalonic acid, although these selectivities were not high (Scheme 5). On the assumption of a syn planar arrangement between the alkoxy hydrogen on the phenylmenthol and the ester carbonyl oxygen atom, ${ }^{15}$ two conformations (\mathbf{C} and \mathbf{D}) arising from different geometries must

38
2 mol equiv.
LDA

C

$39 \mathbf{R}^{1}=\mathrm{H}$

$40 R^{1}=$ alkyl group

Scheme 6 Putative conformations of dianions reacting to give major products
be considered for the alkylation reaction (Scheme 6). It was assumed from the stereostructures of the major products that the major pathway of the alkylation of the half-ester 14 of methylmalonic acid would be access of the electrophile from the less hindered α-side of the conformation \mathbf{C}, leading to product 39, while the other conformation \mathbf{D} would be preferred for the reaction of the dianions derived from monoalkylmalonates 9,23 and 24. The above results suggested that conformation \mathbf{C} would be more thermodynamically stable than \mathbf{D}, although the difference in enthalpy between conformations \mathbf{C} and \mathbf{D} would be small. In conformation \mathbf{C}, the alkyl group (R^{1}) directed to the α-side would prevent the approach of the electrophile from the same side. In conformation \mathbf{D}, the rotation of the alkyl group (R^{1}) is not so restricted compared with the case of conformation \mathbf{C}, and this transition state \mathbf{D} leading to product 40 would be more important for the reaction of half-esters of monosubstituted malonic acids 38 (except methylmalonic acid).* We therefore deduced from the above considerations that the major product on benzylation of compound 9 would be compound 37 , whereas the major one from ethylation of compound 24 would be compound 36 .

Asymmetric Synthesis of Key Intermediates for Aspido-sperma- and Hunteria-type Indole Alkaloids.-Recently, Takano et al. ${ }^{17}$ and Fuji and co-workers ${ }^{18}$ have independently accomplished asymmetric total synthesis of Aspidosperma- and Hunteria-type indole alkaloids. We considered that their synthetic intermediates 41^{18} and $\mathbf{4 2}^{17.18}$ could be derived from the acid 43, which would in turn be diastereoselectively obtained by allylation of the half-ester 9 of ethylmalonic acid. Thus the synthetic approach as shown in Scheme 7 was examined in order to confirm the usefulness of this approach and the validity of the above working hypothesis concerning the reaction mechanism.
In expectation of the preferred formation of the (S)-isomer 43 from the above mechanistic considerations, the half-ester 9 was treated with excess of LDA, followed by allyl iodide at

[^0]

43
9

Scheme 7 Strategy for synthesis of key intermediates 41 and 42 to the indole alkaloids
-78 to $-50^{\circ} \mathrm{C}$ to give (quantitatively) a mixture of two diastereoisomers 43 and 44 in the ratio 2.6:1 (Scheme 8). The epimeric mixture of 43 and 44 was treated with oxalyl dichloride in the presence of pyridine to afford the acid chloride, which was treated with diazomethane. The formed diazo ketone was irradiated in methanol through a Pyrex filter with a 400 W high-pressure mercury lamp to give, in 76% overall yield for the three steps, the methyl ester, whose major isomer 45 was

Scheme 8 Reagents: i. LDA, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{I}$; ii, $(\mathrm{COCl})_{2}$, pyridine; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; iv, $h \mathrm{c}, \mathrm{MeOH} ; \mathrm{v},\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{BH}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$; vi, DIBAL; vii, $\mathrm{KO}_{2}, 18$-crown-6; viii, HCl
isolated by HPLC. Hydroboration of the alkene 45, using dicyclohexylborane, followed by oxidation, provided the primary alcohol 46 in 92% yield. Reduction of compound 46 with diisobutylaluminium hydride (DIBAL) gave, in 72% yield, the diol 47, whose phenylmenthyl group was removed by potassium superoxide in the presence of 18 -crown- 6^{19} at room temperature. The crude acid was heated with 9% hydrochloric acid to produce the lactone $\mathbf{4 1}$ in 87% overall yield for two steps. The lactone 41, whose spectral data were identical with those of the authentic compound, ${ }^{18}$ had previously been transformed into (-)-aspidospermidine 48, (- -eburnamonine 49 and (+)-eburnamine 50. ${ }^{18}$
Since the specific rotation of the butanolide $\mathbf{4 1}$ had not been previously recorded in the literature, ${ }^{18}$ the alcohol 46 was converted into the bicyclic lactone $\mathbf{4 2}{ }^{17,18}$ for the determination of the stereochemistry of the major product (Scheme 9).

Scheme 9 Reagents: i, TBDMSCl, DMAP, Et ${ }_{3}$ N; ii, DIBAL; iii, Swern ox.; iv, $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}, \mathrm{CSA} ; \mathrm{v}, \mathrm{KO}_{2}, 18$-crown-6; vi, HClO_{4}

Protection of the hydroxy group of compound 46 with t-butyldimethylsilyl (TBDMS) group (93% yield), followed by reduction of the resulting ester 51 with DIBAL, gave the hydroxy ester 52 in 76% yield. After Swern oxidation of the alcohol function of compound 52, the resulting aldehyde was converted, in the presence of ($1 R$)-camphor-10-sulphonic acid (CSA), into the acetal 53 in 79% overall yield for two steps. The phenylmenthyl group of compound 53 was deblocked with potassium superoxide in the presence of 18 -crown- 6^{19} in refluxing benzene and the acid thus formed was treated with perchloric acid in hot THF to give the bicyclic lactone 42, m.p. $78-82^{\circ} \mathrm{C}$ (lit., ${ }^{17} 82-85^{\circ} \mathrm{C}$; lit., ${ }^{18} 89-90^{\circ} \mathrm{C}$) in 58% overall yield, whose spectral and chromatographic properties were identical with those of an authentic specimen. ${ }^{17}$ The specific rotation, $[\alpha]_{\mathrm{D}}^{24}+8.16^{\circ}\left(c 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ lit., ${ }^{17}{ }^{17}[\alpha]_{\mathrm{D}}+6.7^{\circ}(c \quad 0.42$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; lit., $\left.{ }^{18}[\alpha]_{\mathrm{D}}^{22}+5.4^{\circ}\left(c 1.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$ determined the absolute configuration of lactone $\mathbf{4 2}$ as depicted. The bicyclic lactone 42 had previously been converted into (-)-eburnamonine 49, (+)-eburnamine 50 and (-)-eburnamenine $54 .{ }^{17}$

The consistency of the absolute configuration of the major product $\mathbf{4 3}$ with the expected configuration would suggest the validity of the previous mechanistic considerations. Thus the stereochemistry of the major product of alkylation of phenylmenthyl half-esters could be correctly anticipated according to the above reaction mechanisms. In summary, a new method for the enantioselective construction of a quaternary asymmetric carbon centre was developed. The possible production of optically pure building blocks by separation of two diastereoisomers, as well as the possible assignment of their stereostructures, are characteristic merits of this methodology.

Experimental

General Methods.-M.p.s were determined on a Yanako micromelting point apparatus and are uncorrected. IR spectra were recorded on a JASCO IR-Report-100 spectrophotometer. NMR spectra were measured for CDCl_{3} solutions on a JEOL-FX-90A or a JNM-GX-500 spectrometer. Chemical shifts are reported relative to internal SiMe_{4}, and J-values are given in Hz. Mass spectra were taken on a JEOL-JMS-01SG-2, JEOL-DX-300 or JEOL-DX-303 spectrometer. Optical rotations were determined on a JASCO-DIP- 340 polarimeter. All reactions except hydrogenation were run under dry nitrogen or argon. Solvents were freshly distilled prior to use: THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium-benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$; acetonitrile was distilled from CaH_{2}. Unless otherwise noted, all reaction mixtures were dried, after work-up, over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Silica gel column chromatography was carried out with Merck Kieselgel 60 (70230 mesh), while flash chromatography was performed on Merck Kieselgel 60 ($230-400 \mathrm{mesh}$). TLC was carried out on Merck Kieselgel $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$. HPLC was carried out with a Gilson HPLC system Model 302/303 and monitored by UV absorption and refractive-index measurements.
(1R,3R,4S)-p-Menthan-3-yl Hydrogen Isopropyl(methyl)malonates 5.-To a stirred solution of diisopropylamine (0.144 $\left.\mathrm{cm}^{3}, 1.1 \mathrm{mmol}\right)$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added butyllithium ($1.54 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution: $0.68 \mathrm{~cm}^{3}, 1.05 \mathrm{mmol}$) and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. To the resulting mixture was added a solution of the half-esters 4^{1} ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$) in dry THF ($1.5 \mathrm{~cm}^{3}$). After the mixture had been stirred for 45 min at $-78^{\circ} \mathrm{C}$, MeI $\left(0.12 \mathrm{~cm}^{3}, 2.0\right.$ mmol) was added at the same temperature. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ before the addition of $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. The resulting mixture was washed successively with $5 \% \mathrm{HCl}$, $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq} . \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and brine, dried, and evaporated under reduced pressure to give a residue, which was subjected to flash chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (99:1 v / v) afforded the diastereoisomeric mixture of the acids 5 (130 $\mathrm{mg}, 87 \%$) as a syrup [Found: $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 299.2237. $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{4}$ requires $m / z, 299.2222] ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.73$ and $0.74[3 \mathrm{H}(1: 2.4)$, each d, each $J 7.5,1-\mathrm{Me}], 1.37$ and $1.38\left[3 \mathrm{H}(1: 2.4)\right.$, each s, $\left.2^{\prime}-\mathrm{Me}\right]$ and 4.71 and $4.74[1 \mathrm{H}(1: 2.4)$, each dt, each $J 4.5$ and $10.5,3-\mathrm{H}]$.
(R)- α-Phenylethyl Hydrogen Ethylmalonates 6.-To a stirred solution of $(R)-(+)-\alpha$-phenylethyl alcohol ($200 \mathrm{mg}, 1.64 \mathrm{mmol}$), ethylmalonic acid ($345 \mathrm{mg}, 2.61 \mathrm{mmol}$), DMAP ($39 \mathrm{mg}, 0.32$ mmol) and $\mathrm{MeCN}\left(4 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ at $-37^{\circ} \mathrm{C}$ was slowly added a solution of DCC ($348 \mathrm{mg}, 1.69 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 15 h at $-37^{\circ} \mathrm{C}$. After concentration under reduced pressure, the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$ and the solution was then filtered. The filtrate was washed successively with saturated aq. KHSO_{4} and brine, dried and evaporated. The residue was purified by silica gel column chromatography with benzene- $\operatorname{AcOEt}(95: 5 \mathrm{v} / \mathrm{v})$ as eluent to give the half-esters $6(239 \mathrm{mg}, 62 \%$) as a pale yellow oil (Found: $\mathrm{M}^{+}, 236.1049 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $\mathrm{M}, 236.1047$); $[\alpha]_{\mathrm{D}}^{24}+51.87^{\circ}$ (c $\left.2.27, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ 0.96 and 0.99 [$3 \mathrm{H}\left(1.16: 1\right.$), each t , each $\left.J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right], 1.57$ ($3 \mathrm{H}, \mathrm{d}, J 6.5$, PhCHMe), 1.97 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $3.35(1 \mathrm{H}$, br t, $\left.J 7.5, \mathrm{CHCO}_{2} \mathrm{H}\right), 5.95(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{PhCH})$ and $7.26-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
(R)- α-Phenylethyl Hydrogen Ethyl(methyl)malonates 10.The mixture of half-esters $6(74 \mathrm{mg}, 0.31 \mathrm{mmol})$ was methylated at $-78^{\circ} \mathrm{C}$ under the same conditions as for compound 4 and the product was purified by silica gel column chromatography. Elution with benzene-acetone ($4: 1 \mathrm{v} / \mathrm{v}$) afforded the acids $\mathbf{1 0}$ ($62 \mathrm{mg}, 78 \%$) as a yellowish syrup (Found: C, 67.2; H, 7.7.
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 7.2 \%$); $[\alpha]_{\mathrm{D}}^{26}+38.01^{\circ}(c 0.63$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.857$ and $0.864\left[3 \mathrm{H}(1.11: 1)\right.$, each t , each $\left.J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right], 1.45(3 \mathrm{H}$, $\left.\mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$, 1.56 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{PhCH} M e$), 1.94-2.02 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 5.95$ and $5.96[1 \mathrm{H}(1: 1.11)$, each q , each $J 6.5, \mathrm{PhCH}]$ and 7.26-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z 250\left(\mathrm{M}^{+}\right)$.
(2R,3R)-4,7,7-Trimethyl-3-(1-naphthyl)bicyclo[2.2.1]heptan-2-yl Hydrogen Ethyl(methyl)malonates 11.-The mixture of half-esters $7(34 \mathrm{mg}, 0.086 \mathrm{mmol})$ was methylated under the same conditions as for compound $\mathbf{4}$ and the crude product was purified by flash chromatography. Elution with hexane-AcOEt ($7: 1 \mathrm{v} / \mathrm{v}$) gave the acid $11\left(32 \mathrm{mg}, 90 \%\right.$) as a syrup (Found: M^{+}, 408.2309. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{M}, 408.2299$); $[\alpha]_{\mathrm{D}}^{22}-134.78^{\circ}(c$ $\left.0.61, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.15$ and $0.31[3 \mathrm{H}(1: 3)$, each t , each $\left.J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right], 0.42$ and $0.55[3 \mathrm{H}(1: 3)$, each s, Me] and 5.51 and $5.56[1 \mathrm{H}(3: 1)$, each d, each $J 9.0,2-\mathrm{H}]$.
(1R,3R,4S)-p-Menthan-3-yl Hydrogen Ethyl(methyl)malonates 12.-The mixture of menthyl esters $\mathbf{8}^{1}(135 \mathrm{mg}, 0.5$ mmol) was methylated under the same conditions as for compound 4 and the product was purified by flash chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(98.5: 1.5 \mathrm{v} / \mathrm{v})$ afforded the acids 12 ($126 \mathrm{mg}, 89 \%$) as a syrup [Found: $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 285.2063. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4}$ requires m / z, 285.2066]; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.74(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{H}), 0.88-0.92\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH} M e_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right)$ and 4.71 and $4.72[1 \mathrm{H},(1: 2)$, each dt, each $J 4.5$ and $12.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Ethyl(methyl)malonates 13A and 13B--Method A. The mixture of half-esters 9 ($173 \mathrm{mg}, 0.5 \mathrm{mmol}$) was methylated under the same conditions as for compound 4 and the product was purified by flash chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}(47: 3 \mathrm{v} / \mathrm{v})$ afforded the acids 13A and 13B (144 mg , 80%) as a syrup (Found: $\mathrm{M}^{+}, 360.2286 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}$ requires M , $360.2298)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.84-0.89\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right)$, 1.21 and 1.32 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 1.23 and 1.28 [3 H (5:1), each s, $1^{\prime}-\mathrm{Me}$] and 4.89 and 4.93 [$1 \mathrm{H}(1: 5)$, each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
Method B. To a solution of LDA [prepared from diisopropylamine ($0.048 \mathrm{~cm}^{3}, 0.34 \mathrm{mmol}$) and butyllithium ($1.56 \mathrm{~mol} \mathrm{dm}{ }^{3}$; $\left.\left.0.183 \mathrm{~cm}^{3}, 0.29 \mathrm{mmol}\right)\right]$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a solution of the phenylmenthyl half-esters (14) (38 mg , $0.11 \mathrm{mmol})$ of methylmalonic acid in dry THF $\left(1 \mathrm{~cm}^{3}\right)$. After having been stirred for 30 min at $-78^{\circ} \mathrm{C}$, and then treated with ethyl iodide ($0.027 \mathrm{~cm}^{3}, 0.34 \mathrm{mmol}$), the mixture was stirred for 10 h at $-25^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$, the mixture was poured into $5 \% \mathrm{HCl}$. The aq. layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was subjected to flash chromatography. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(47: 3 \mathrm{v} / \mathrm{v})$ afforded the acids 13A and $\mathbf{1 3 B}\left(34 \mathrm{mg}, 83 \%\right.$) as a syrup; $\delta_{\mathbf{H}}(500$ $\mathrm{MHz}) 1.23$ and 1.28 [$3 \mathrm{H}(4: 1)$, each s, $\left.1^{\prime}-\mathrm{Me}\right]$ and 4.89 and 4.93 [$1 \mathrm{H}(1: 4)$, each dt, each $J 4.5$ and $11.0,3-\mathrm{H}$]; other spectral properties were identical with those of the sample prepared by method A.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Methyl(propyl)malonates 15A and 15B.-Method A. The mixture of halfesters $14(41 \mathrm{mg}, 0.12 \mathrm{mmol})$ was treated with propyl iodide ($0.036 \mathrm{~cm}^{3}, 0.37 \mathrm{mmol}$) at $-25^{\circ} \mathrm{C}$ for 10 h under the same conditions as method B for the preparation of 13, and the product was purified by flash chromatography. Elution with hexane-AcOEt ($7: 3 \mathrm{v} / \mathrm{v}$) gave the acids 15A and 15B (33 mg , 72%) as a syrup (Found: $\mathrm{M}^{+}, 374.2410 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}$ requires M , $374.2455)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.84-$ $0.93\left(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{Me}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.22$ and 1.32 (each 3 H , each s,
$\left.\mathrm{CPh} M e_{2}\right), 1.23$ and $1.29\left[3 \mathrm{H}(4: 1)\right.$, each s, $\left.2^{\prime}-\mathrm{Me}\right]$ and 4.89 and 4.92 [$1 \mathrm{H}(1: 4)$, each dt, each $J 4.5$ and $10.5,3-\mathrm{H}$].

Method B. The mixture of half-esters (23) ($1.02 \mathrm{~g}, 2.83 \mathrm{mmol}$) of propylmalonic acid was methylated under the same conditions as for compound 4 and the product was purified as above to give the acids 15A and 15B ($890 \mathrm{mg}, 84 \%$) as a syrup; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.23$ and $1.29\left[3 \mathrm{H}(5: 1)\right.$, each s, $\left.2^{\prime}-\mathrm{Me}\right]$ and 4.89 and $4.92[1 \mathrm{H}(1: 5)$, each dt, each $J 4.5$ and $10.5,3-\mathrm{H}]$; other spectral data were identical with those of the specimen prepared by method A.

Method C. A mixture of the olefinic acids $16(30 \mathrm{mg}, 0.08$ mmol) and $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ in THF ($5 \mathrm{~cm}^{3}$) was stirred for 24 h at room temperature under H_{2} (1 atm). After filtration, followed by evaporation of the filtrate under reduced pressure, the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with brine, dried and evaporated under reduced pressure. The residue was subjected to flash chromatography to give the acids 15A and 15b ($28 \mathrm{mg}, 93 \%$) as a syrup; $\delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 1.23$ and $1.29\left[3 \mathrm{H}(7: 1)\right.$, each s, $\left.2^{\prime}-\mathrm{Me}\right]$ and 4.89 and 4.92 [$1 \mathrm{H}(1: 7)$, each dt, each $J 4.5$ and $10.5,3-\mathrm{H}]$; other spectral data were identical with those of the above samples.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Allyl(methyl)malonates 16A and 16B.-The mixture of half-esters $14(81 \mathrm{mg}$, 0.243 mmol) was treated with allyl iodide ($409 \mathrm{mg}, 2.44 \mathrm{mmol}$) for 12 h at $-78^{\circ} \mathrm{C}$ as above and the product was purified by flash chromatography with hexane-AcOEt ($4: 1 \mathrm{v} / \mathrm{v}$) as eluent to afford the acids 16A and 16B ($69 \mathrm{mg}, 77 \%$) as a syrup (Found: $\mathrm{M}^{+}, 372.2259 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{M}, 372.2299$); $[\alpha]_{\mathrm{D}}^{24}-13.47^{\circ}$ (c $\left.1.28, \mathrm{CHCl}_{3}\right) ; \delta_{\mathbf{H}}(500 \mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 1.22$ and 1.27 [$3 \mathrm{H}\left(7: 1\right.$), each s, $2^{\prime}-\mathrm{Me}$], 1.23 and 1.32 (each 3 H , each s, CPh Me_{2}), 4.89 and 4.91 [1 H (1:7), each dt, each $J 4.5$ and 11.0, $3-\mathrm{H}], 5.06-5.15(2 \mathrm{H}, \mathrm{m}, 2 \times$ olefinic H$)$ and $5.60-5.72(1 \mathrm{H}, \mathrm{m}$, olefinic H).
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Methyl(2methylallyl)malonates 17 A and $\mathbf{1 7 B}$.-The mixture of half-esters $14(54 \mathrm{mg}, 0.16 \mathrm{mmol})$ was treated with methallyl iodide (296 $\mathrm{mg}, 1.62 \mathrm{mmol}$) for 12 h at $-78^{\circ} \mathrm{C}$ under the same conditions as above and the product was subjected to flash chromatography with hexane-AcOEt ($4: 1 \mathrm{v} / \mathrm{v}$) as eluent to give the acids 17A and 17B ($57 \mathrm{mg}, 91 \%$) as a syrup (Found: $\mathbf{M}^{+}, 386.2419$. $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{M}, 386.2455$); $[\alpha]_{\mathrm{D}}^{23}-13.27^{\circ}$ (c 3.69, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 1.22$ and 1.29 [$3 \mathrm{H}\left(6: 1\right.$), each $\left.\mathrm{s}, 2^{\prime}-\mathrm{Me}\right], 1.24$ and 1.32 (each 3 H , each s, $\left.\mathrm{CPh} M e_{2}\right), 1.67$ and 1.68 [$3 \mathrm{H}(6: 1)$, each s, $\left.4^{\prime}-\mathrm{Me}\right], 4.65$ and 4.73 [1 H (6:1), each s, olefinic H], 4.83 and 4.86 [1 H (6:1), each t, each $J 0.5$, olefinic H] and 4.88 and 4.91 [1 H (1:6), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Benzyl(methyl)malonates 18A and 18B--Method A. The mixture of half-esters $14(60 \mathrm{mg}, 0.18 \mathrm{mmol})$ was treated with benzyl bromide ($0.21 \mathrm{~cm}^{3}, 1.80 \mathrm{mmol}$) for 14 h at $-25^{\circ} \mathrm{C}$ as above and the product was purified by flash chromatography. Elution with hexane-AcOEt ($7: 3 \mathrm{v} / \mathrm{v}$) gave the acids 18A and 18B (55 $\mathrm{mg}, 72 \%$) as a syrup (Found: $\mathrm{M}^{+}, 422.2438 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4}$ requires M, 422.2455); $[\alpha]_{\mathrm{D}}^{29}-17.15^{\circ}\left(c 3.80, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.83$ ($3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}$), $1.16\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right), 1.23$ and 1.32 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 2.97 and 3.03 [1 H (12:1), each d, each $J 13.5, \mathrm{CHHPh}], 3.11$ and 3.14 [$1 \mathrm{H},(12: 1)$, each d, each J $13.5, \mathrm{CH} H \mathrm{Ph}]$ and $4.90(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$.

Method B. The mixture of half-esters (24) ($32 \mathrm{mg}, 0.078 \mathrm{mmol}$) of benzylmalonic acid was methylated under the same conditions as for compound 4 and the product was purified as above to give the acids 18A and $\mathbf{1 8 B}(20 \mathrm{mg}, 61 \%)$ as a syrup; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 2.97$ and $3.03[1 \mathrm{H}(15: 1)$, each d, each $J 13.5$, $\mathrm{C} H \mathrm{HPh}]$ and 3.11 and 3.14 [1 H (15:1), each d, each $J 13.5$,
$\mathrm{CH} H \mathrm{Ph}]$; other spectral data were identical with those of the sample prepared by method A.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Methyl(2-nitrobenzyl)malonates 19 A and 19 B .-The mixture of half-esters $14(110 \mathrm{mg}, 0.33 \mathrm{mmol})$ was treated with 2-nitrobenzyl bromide $(715 \mathrm{mg}, 3.31 \mathrm{mmol})$ for 14 h at $-25^{\circ} \mathrm{C}$ under the same conditions as the case of the conversion of compounds 14 into compounds 13 , and the product was purified by flash chromatography. Elution with hexane-AcOEt (4:1 v/v) afforded the acids 19 A and $19 \mathrm{~B}(146 \mathrm{mg}, 94 \%)$ as a yellowish syrup, $[\alpha]_{\mathrm{D}}^{26}+10.82^{\circ}\left(c 2.18, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.82(3 \mathrm{H}, \mathrm{d}$, $J 7.5,1-\mathrm{Me}), 1.14\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right), 1.20$ and 1.29 (each 3 H , each s, $\mathrm{CPh} \mathrm{Me}_{2}$), 3.49 and 3.56 [$1 \mathrm{H}(10: 1)$, each d, each $J 14.0$, CHHAr], 3.54 and 3.59 [1 H (10:1), each d, each J 14.0, $\mathrm{CHHAr}]$ and 4.89 and 4.92 [1 H (10:1), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.

The above acids 19A and 19B were treated with excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in the usual manner and the product was purified by flash chromatography with hexane-AcOEt ($95: 1 \mathrm{v} / \mathrm{v}$) as eluent to give the corresponding methyl esters as a yellowish syrup (Found: $\mathrm{M}^{+}, 481.2461 . \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$ requires $\mathrm{M}, 481.2462$); $[x]_{\mathrm{D}}^{24}-2.23^{\circ}\left(c 0.36, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.82(3 \mathrm{H}, \mathrm{d}, J 7.5$, $1-\mathrm{Me}), 1.07$ and 1.24 [$3 \mathrm{H}(1: 10)$, each $\left.\mathrm{s}, 2^{\prime}-\mathrm{Me}\right], 1.20$ and 1.30 (each 3 H , each $\mathrm{s}, \mathrm{CPh} \mathrm{Me}_{2}$), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$) and 4.89 and 4.93 [1 H (10:1), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Methyl(4-nitrobenzyl)malonates $\mathbf{2 0 A}$ and 20B.-The mixture of half-esters 14 ($60 \mathrm{mg}, 0.18 \mathrm{mmol}$) was treated with 4-nitrobenzyl bromide ($390 \mathrm{mg}, 1.80 \mathrm{mmol}$) for 14 h at $-25^{\circ} \mathrm{C}$ as above and the product was purified by flash chromatography with hexane$\mathrm{AcOEt}(3: 2 \mathrm{v} / \mathrm{v})$ as eluent to give the acids 20A and 20B (83 mg , 95%), which were converted $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ into the corresponding methyl esters. Flash chromatography with hexane-AcOEt ($95: 5 \mathrm{v} / \mathrm{v}$) as eluent afforded the esters as a yellowish oil (Found: $\mathrm{M}^{+}, 481.2440 . \mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{6}$ requies $\mathrm{M}, 481.2462$); $\delta_{\mathrm{H}}(500 \mathrm{MHz})$ $0.82(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 2.90$ and $3.09[1 \mathrm{H}(8: 1)$, each d, each $J 13.0, \mathrm{CH} \mathrm{HAr}], 3.24$ and 3.26 [1 H (1:8), each d, each $J 13.0$, $\mathrm{CHHAr}], 3.70$ and 3.72 [$3 \mathrm{H}(8: 1)$, each s, OMe] and 4.90 and 4.93 [1 H (8:1), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen 4-Methoxybenzyl(methyl)malonates 21A and 21B.-The mixture of halfesters $14(97 \mathrm{mg}, 0.29 \mathrm{mmol})$ was treated with 4 -methoxybenzyl bromide ($587 \mathrm{mg}, 2.92 \mathrm{mmol}$) for 14 h at $-25^{\circ} \mathrm{C}$ as above and the product was purified by flash chromatography to give the acids 21 A and $21 \mathrm{~B}(97 \mathrm{mg}, 71 \%)$. Treatment of acids 21 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, followed by flash chromatography with hexaneAcOEt ($95: 5 \mathrm{v} / \mathrm{v}$) as eluent, afforded the corresponding methyl esters as a syrup (Found: $\mathrm{M}^{+}, 466.2719 . \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5}$ requires M , 466.2717); $[x]_{\mathrm{D}}^{23}-18.8^{\circ}\left(c 0.79, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.83$ ($3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}$), 1.20 and 1.26 [$3 \mathrm{H}(1: 12)$, each s $2-\mathrm{Me}]$, 1.22 and 1.32 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 2.87 and $2.99[1 \mathrm{H}$, (12:1), each d, each $J 13.0$, CHHAr], 3.16 and 3.19 [1 H (1:12), each d, each J 13.0, CHHAr], 3.70 and 3.72 [$3 \mathrm{H}(12: 1)$, each s, OMe], $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.89$ and 4.92 [$1 \mathrm{H}(12: 1)$, each dt , each $J 4.5$ and $11.0,3-\mathrm{H}$] and 6.80 and 7.02 (each 2 H , each d, each $J 8.5,4 \times \mathrm{ArH}$).
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen 2-Methoxybenzyl(methyl)malonates 22A and 22B.-The mixture of halfesters $14(97 \mathrm{mg}, 0.29 \mathrm{mmol})$ was treated with 2-methoxybenzyl bromide ($587 \mathrm{mg}, 2.92 \mathrm{mmol}$) for 14 h at $-25^{\circ} \mathrm{C}$ as above and the product was purified by flash chromatography with hexane$\mathrm{AcOEt}(9: 1 \mathrm{v} / \mathrm{v})$ as eluent to give the acids 22A and 22B (97 mg , 93%) as a syrup (Found: $\mathrm{M}^{+}, 452.2577 . \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5}$ requires $\mathrm{M}, 452.2561) ;[x]_{\mathrm{D}}^{25}-13.92^{\circ}\left(c 6.82, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$
$0.84(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 1.13\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{Me}\right), 1.24$ and 1.34 (each 3 H , each s, $\mathrm{CPh} \mathrm{Me}_{2}$), 3.10 and 3.19 [1 H (16:1), each d, each J 14.0, CHHAr], 3.25 and 3.29 [1 $\mathrm{H}(16: 1)$, each d, each $J 14.0, \mathrm{CH} H \mathrm{Ar}]$ and 4.89 and 4.91 [1 H (1:16), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Malonate 25.-To a stirred solution of $(-)$-phenylmenthol ${ }^{2}(525 \mathrm{mg}$, 2.26 mmol), malonic acid ($470 \mathrm{mg}, 4.52 \mathrm{mmol}$), DMAP (20 mg , $0.16 \mathrm{mmol})$ and $\mathrm{MeCN}\left(25 \mathrm{~cm}^{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ at $-35^{\circ} \mathrm{C}$ was slowly added a solution of DCC ($699 \mathrm{mg}, 3.39 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 10 h at $-30^{\circ} \mathrm{C}$. After evaporation, the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$ and the solution was filtered through Celite. The filtrate was washed successively with saturated aq. KHSO_{4} and brine, dried, and evaporated. The residue was subjected to flash chromatography with benzene-acetone ($4: 1 \mathrm{v} / \mathrm{v}$) as eluent to afford a solid, which was recrystallised from benzene to give the acid $25(705 \mathrm{mg}, 98 \%)$ as needles, m.p. $111-112^{\circ} \mathrm{C}$ (Found: M^{+}, 318.1838. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $\mathrm{M}, 318.1831$); $[\alpha]_{\mathrm{D}}^{22}+3.19^{\circ}(c$ $\left.3.32, \mathrm{CHCl}_{3}\right) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1748$ and $1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}(90$ $\mathrm{MHz}) 0.87(3 \mathrm{H}, \mathrm{d}, J 6.9,1-\mathrm{Me}), 1.20$ and 1.32 (each 3 H , each s, $\mathrm{CPh} \mathrm{Me}_{2}$), 2.31 and 2.72 (each 1 H , each d, each J 18.0, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{dt}, J 4.8$ and $11.4,3-\mathrm{H})$ and $7.22-7.41$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Benzylmalonates 24.-To a stirred solution of LDA [prepared from diisopropylamine $\left(0.16 \mathrm{~cm}^{3}, 1.13 \mathrm{mmol}\right)$ and butyllithium $(1.56$ $\left.\left.\mathrm{mol} \mathrm{dm}{ }^{-3} ; 0.54 \mathrm{~cm}^{3}, 0.85 \mathrm{mmol}\right)\right]$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a solution of the above acid $25(90 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry THF ($5 \mathrm{~cm}^{3}$). After having been stirred for 30 min , and then treated with benzyl bromide $\left(0.12 \mathrm{~cm}^{3}, 0.99 \mathrm{mmol}\right)$, the mixture was stirred for 10 h at $-25^{\circ} \mathrm{C}$. After the same workup as previously, the product was purified by flash chromatography with hexane-AcOEt $(4: 1 \mathrm{v} / \mathrm{v})$ as eluent to give the half-esters 24 ($83 \mathrm{mg}, 72 \%$) as a syrup (Found: M^{+}, 408.2298. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}$ requires $\mathrm{M}, 408.2299$); $[\alpha]_{\mathrm{D}}^{26}+15.30^{\circ}(c$ $\left.3.49, \mathrm{CHCl}_{3}\right) ; \delta_{\mathbf{H}}(500 \mathrm{~Hz}) 0.82$ and $0.85[3 \mathrm{H}(9: 11)$, each d, each $J 7.5,1-\mathrm{Me}$], 1.09 and 1.12 [$3 \mathrm{H}(9: 11)$, each $\mathrm{s}, 8-\mathrm{Me}$], 1.19 and 1.27 [3 H (9:11), each s, 8-Me], 2.85-3.06 (3 H, m, CHCH2 Ph) and $4.80(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$.

4-Methyl 1-[(1'R,3'R,4'S)-8'-Phenyl-p-menthan-3-yl] (R)-2-Ethyl-2-methylbutanedioate 26.-A mixture of the half-esters $13(118 \mathrm{mg}, 0.32 \mathrm{mmol})$, prepared by method B , and oxalyl dichloride $\left(0.5 \mathrm{~cm}^{3}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was stirred for 20 h at room temperature, before evaporation under reduced pressure. The acid chloride thus formed was used in the next reaction without purification.

The product was taken up into benzene $\left(2 \mathrm{~cm}^{3}\right)$ and then treated with an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$. After having been stirred for 5 h at room temperature the mixture was evaporated under reduced pressure. The crude diazo ketone was subjected to the next reaction without purification.

A mixture of the above product, silver(I) benzoate $(7.6 \mathrm{mg}$, $0.32 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.4 \mathrm{~cm}^{3}\right)$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was stirred for 14 h at room temperature. After dilution with benzene (30 cm^{3}) and filtration, the filtrate was washed successively with saturated aq. KHSO_{4}, brine, saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purified by flash chromatography with hexane- $\mathrm{Et}_{2} \mathrm{O}(95: 5 \mathrm{v} / \mathrm{v})$ as eluent to give a epimeric mixture of esters $26(64 \mathrm{mg}, 51 \%)$, whose ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz) and HPLC chromatngram determined the ratio of two diastereoisomers as 4.1. Separation of stereoisomers by HPLC on a $10 \times 250 \mathrm{~mm}$ column of Dynamax microsorb silica $5 \mu \mathrm{~m}$ with hexane-AcOEt ($98: 2 \mathrm{v} / \mathrm{v}$) as eluent $\left(4 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ gave the major, (R)-isomer

26 as an oil (Found: M^{+}, 388.2628. $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires M , $388.2616)$; $[\alpha]_{\mathrm{D}}^{24}-17.40^{\circ}\left(c 0.91, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.82$ ($3 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}_{2} M e$), $0.85\left(3 \mathrm{H}, \mathrm{d}, J 7.5,1^{\prime}-\mathrm{Me}\right), 1.15,1.24$ and 1.37 (each 3 H , each s, $3 \times \mathrm{Me}$), 2.28 and 2.59 (each 1 H , each d, each $\left.J 16.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and 4.85 $\left(1 \mathrm{H}, \mathrm{dt}, J 4.5\right.$ and $\left.11.0,3^{\prime}-\mathrm{H}\right)$.
(2R)-2-Ethyl-2-methylbutane-1,4-diazo Bis-(4-Nitrobenzoate) 27. To a stirred mixture of LAH ($50 \mathrm{mg}, 1.35 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}$ $\left(2 \mathrm{~cm}^{3}\right)$ was added a solution of the diester $26(50 \mathrm{mg}, 0.128$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(3 \mathrm{~cm}^{3}\right)$ and the mixture was heated for 1.5 h under reflux. After having been cooled, followed by successive addition of water ($0.05 \mathrm{~cm}^{3}$) , 15% aq. $\mathrm{NaOH}\left(0.05 \mathrm{~cm}^{3}\right)$ and water $\left(0.15 \mathrm{~cm}^{3}\right)$, the mixture was filtered through Celite and washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined filtrate was dried and evaporated to give a residue, which was used in the following reaction without purification.
A mixture of the crude product, 4-nitrobenzoyl chloride (40 $\mathrm{mg}, 0.22 \mathrm{mmol})$, DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and pyridine $\left(1 \mathrm{~cm}^{3}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was stirred for 24 h at room temperature. After dilution with benzene, the mixture was washed successively with saturated aq. KHSO_{4} and brine, dried, and evaporated under reduced pressure. The residue was subjected to silica gel column chromatography with hexane-AcOEt (9:1 $\mathrm{v} / \mathrm{v})$ as eluent to give the bisnitrobenzoate $27(43 \mathrm{mg}, 78 \%)$ as a solid, recrystallisation of which from EtOH-AcOEt afforded fine needles, m.p. $154^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}-1.93^{\circ}\left(c 1.52, \mathrm{CHCl}_{3}\right)\{$ for $(R)-$ (-)-isomer: lit., ${ }^{9}$ m.p. $\left.154^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-1.8^{\circ}\left(c 3.3, \mathrm{CHCl}_{3}\right)\right\}$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl 2^{\prime}-Benzyloxycarbonyl-amino- $\mathbf{2}^{\prime}$-methylbutanoates 28.-To a solution of the half-esters $13(251 \mathrm{mg}, 0.69 \mathrm{mmol})$, prepared by method A , in dry benzene ($20 \mathrm{~cm}^{3}$) were added diphenylphosphoryl azide $\left(0.45 \mathrm{~cm}^{3}, 2.092\right.$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.32 \mathrm{~cm}^{3}, 2.30 \mathrm{mmol}\right)$ and the mixture was heated for 2 h under reflux. After addition of benzyl alcohol ($0.29 \mathrm{~cm}^{3}, 2.79 \mathrm{mmol}$) the resulting mixture was heated for 20 h under reflux. After evaporation under reduced pressure, the residue was taken up into AcOEt. The organic solution was washed successively with 5% aq. citric acid, water, saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography with hexane-AcOEt ($95: 5 \mathrm{v} / \mathrm{v}$) to give the urethanes 28 ($276 \mathrm{mg}, 86 \%$) as a pale yellowish oil (Found: M^{+}, 465.2880. $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{4}$ requires $\mathrm{M}, 465.2879$); $[\alpha]_{\mathrm{D}}^{24}-5.03^{\circ}(c$ $\left.1.29, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3470$ and $3440(\mathrm{NH})$ and 1720 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.76\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J$ $7.5,1-\mathrm{Me}), 1.20$ and $1.22[3 \mathrm{H},(1: 5)$, each s, Me], $1.32(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 1.37$ and 1.40 [$3 \mathrm{H}(1: 5)$, each s, Me], 4.86 and $4.88[1 \mathrm{H}$ (1:5), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$ and 5.17 and $5.37[1 \mathrm{H}$ (1:5), each br s, NH].
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl
(2'S)- $2^{\prime}-$ Amino- 2^{\prime} methylbutanoate 29.-A mixture of the urethanes $28(237 \mathrm{mg}$, $0.51 \mathrm{mmol}), 10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ and cyclohexene ($3 \mathrm{~cm}^{3}, 0.03$ $\mathrm{mol})$ in $\mathrm{EtOH}\left(8 \mathrm{~cm}^{3}\right)$ was heated for 45 min under reflux. After having been cooled, the mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was partitioned between 10% aq. ammonia and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aq. layer was thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried and evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel with hexaneisopropyl alcohol ($9: 1 \mathrm{v} / \mathrm{v}$) as eluent to afford the epimeric mixture of amines 29 ($135 \mathrm{mg}, 81 \%$) as a pale yellowish syrup. HPLC separation on a $4.6 \times 250 \mathrm{~mm}$ column of Dynamax microsorb C18 $5 \mu \mathrm{~m}$ with 5% aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}-\mathrm{MeOH}(1: 4 \mathrm{v} / \mathrm{v})$ as eluent ($1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) gave the major amine 29 as a syrup (Found: $\mathrm{M}^{+}, 331.2462 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires $\mathrm{M}, 331.2511$);
$[\alpha]_{\mathrm{D}}^{24}-9.48^{\circ}\left(c 1.24, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3380$ and 3320 (NH) and $1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right)$, $0.87(3 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{Me}), 1.04,1.20$ and 1.33 (each 3 H , each s, $3 \times \mathrm{Me}), 4.86(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$ and $7.26-7.33(5 \mathrm{H}$, m, Ph).

Ethyl (2S)-2-(Ethoxycarbonylacetamide)-2-methylbutanoate 30.-To a solution of the above amine $29(15.5 \mathrm{mg}, 0.046 \mathrm{mmol})$ in toluene ($3 \mathrm{~cm}^{3}$) were added 18 -crown- $6(15 \mathrm{mg}, 0.057 \mathrm{mmol}$) and $\mathrm{KOH}(150 \mathrm{mg}, 2.68 \mathrm{mmol})$ and the mixture was heated for 24 h under reflux. After addition of water ($3 \mathrm{~cm}^{3}$), the separated aq. layer was further washed with $\mathrm{Et}_{2} \mathrm{O}$ and then acidified with conc. HCl . Evaporation of the resulting mixture under reduced pressure gave a residue, which was taken up into anhydrous EtOH . Filtration of the mixture, followed by evaporation of the filtrate, gave a residue, which was further taken up into EtOH . After filtration, followed by evaporation, the residue was treated with $\mathrm{HCl}-\mathrm{EtOH}\left(10 \mathrm{w} / \mathrm{v} \% ; 3 \mathrm{~cm}^{3}\right)$ and the mixture was heated for 20 h under reflux. After evaporation under reduced pressure, the residue was partitioned under CHCl_{3} and 10% aq. ammonia. The aq. layer was thoroughly extracted with CHCl_{3}. The combined extracts were washed with brine, dried and evaporated under reduced pressure to give a residue, which was subjected to silica gel column chromatography. Elution with CHCl_{3} gave the amino ester as a pale yellowish oil, which was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. To the solution were added ethyl (chloroformyl)acetate ($0.085 \mathrm{~cm}^{3}, 0.664 \mathrm{mmol}$) and DMAP ($100 \mathrm{mg}, 0.818 \mathrm{mmol}$) and the mixture was stirred for 24 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$, the mixture was washed successively with 10% aq. KHSO_{4}, brine, saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purified by silica gel column chromatography with hexane- $\operatorname{AcOEt}(9: 1 \mathrm{v} / \mathrm{v})$ as eluent to give the (S)-amide $30\left(8.6 \mathrm{mg}, 71 \%\right.$ from $29,[x]_{\mathrm{D}}^{20}+5.3^{\circ}(c 0.86$, benzene) $\left\{\right.$ for $(S)-(+)$-isomer: lit., ${ }^{11}[\alpha]_{\mathrm{D}}^{20}+5.0^{\circ}(c \quad 2.096$, benzene) $\}$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl 2'-Benzyloxycarbonyl-amino-2'-methylpentanoates 31.-The mixture of propyl compounds 15 ($349 \mathrm{mg}, 0.93 \mathrm{mmol}$), prepared by method B, was transformed, according to the same procedure as for compound 28, into the urethanes $31(408 \mathrm{mg}, 91 \%)$ as a pale yellowish oil (Found: C, 75.2; H, 8.65; N, 2.95. $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{NO}_{4}$ requires C, $75.15 ; \mathrm{H}, 8.55 ; \mathrm{N}, 2.9 \%$); $[\alpha]_{\mathrm{D}}^{25}+0.28^{\circ}\left(c \quad 3.56, \mathrm{CHCl}_{3}\right)$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460$ and $3430(\mathrm{NH})$ and $1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{d}, J 7.0,1-\mathrm{Me}), 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Me}\right), 1.22$, 1.32 and 1.40 (each 3 H , each s, $3 \times \mathrm{Me}$), $4.88(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$ and 5.23 and $5.36[1 \mathrm{H}(1: 5)$, each br s, NH]; $m / z 479$ $\left(\mathrm{M}^{+}\right)$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-2'-Amino-2'methylpentanoate 32. Hydrogenolysis of the above urethanes 31 ($852 \mathrm{mg}, 1.78 \mathrm{mmol}$) was carried out under the same conditions as for compound 28 and the product was purified by silica gel column chromatography with hexane-isopropyl alcohol (95:5 v / v) to give an epimeric mixture of amines (32 and its epimer) ($609 \mathrm{mg}, 99 \%$) as a yellowish syrup. HPLC separation on a $4.6 \times 250 \mathrm{~mm}$ column of Dynamax microsorb C18 $5 \mu \mathrm{~m}$ with 5% aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}-\mathrm{MeOH}(1: 4 \mathrm{v} / \mathrm{v})$ as eluent $\left(1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ gave the major amine 32 as a syrup (Found: $\mathrm{M}^{+}, 345.2637$. $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{2}$ requires $\mathrm{M}, 345.2668$); $[\alpha]_{\mathrm{D}}^{21}-5.04^{\circ}$ (c 2.4 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360$ and $3300(\mathrm{NH})$ and 1710 (C=O); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) 0.87(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 0.90(3$ $\mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}_{2} \mathrm{Me}$), 1.04, 1.20 and 1.32 (each 3 H , each s, $3 \times \mathrm{Me}), 4.84(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.5,3-\mathrm{H})$ and $7.26-7.33(5 \mathrm{H}$, m, Ph).

Methyl (2S)-2-Amino-2-methylpentanoate 33.-A mixture of
the above amine $32(90 \mathrm{mg}, 0.26 \mathrm{mmol})$, 18 -crown- $6(36 \mathrm{mg}, 0.14$ mmol) and $\mathrm{KOH}(158 \mathrm{mg}, 2.82 \mathrm{mmol})$ in toluene ($3 \mathrm{~cm}^{3}$) was heated for 12 h under reflux. After addition of water $\left(5 \mathrm{~cm}^{3}\right)$, the aq. layer was washed with $\mathrm{Et}_{2} \mathrm{O}$ and then acidified by addition of conc. HCl . Evaporation of the aq. solution under reduced pressure gave a residue, which was taken up into anhydrous MeOH . Filtration, followed by evaporation of the filtrate under reduced pressure, afforded a residue, to which was added $10 \mathrm{w} / \mathrm{v}$ $\% \mathrm{HCl}-\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$. The resulting mixture was heated for 6 h under reflux. After evaporation under reduced pressure, the residue was partitioned between CHCl_{3} and 10% aq. ammonia. The aq. layer was thoroughly extracted with CHCl_{3}. The combined extracts were washed with brine, dried and evaporated under reduced pressure to give a residue, which was purified by silica gel column chromatography. Elution with CHCl_{3} gave the (S)-amino ester $33(24.9 \mathrm{mg}, 66 \%$) as an oil; $[x]_{\mathrm{D}}^{28}+13.37^{\circ}(c 0.70, \mathrm{EtOH})\left\{\right.$ for $(R)-(-)$-isomer: lit., ${ }^{12}[\alpha]_{\mathrm{D}}$ $\left.-13.0^{\circ}(c 1.5, \mathrm{EtOH})\right\}$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-2'-Benzyloxycar-bonylamino-2'-methyl-3'-phenylpropanoate 34.-The mixture of benzyl compounds 18 ($37 \mathrm{mg}, 0.087 \mathrm{mmol}$), prepared by method A, was transformed, according to the same procedure as for compound 28, into the title urethanes ($\mathbf{3 4}$ and its epimer) (36 $\mathrm{mg}, 80 \%$) as a syrup whose ${ }^{1} \mathrm{H}$ NMR (500 MHz) and HPLC analyses determined the ratio of two diastereoisomers as 12:1. HPLC separation on a $4.6 \times 250 \mathrm{~mm}$ column of Dynamax microsorb silica $5 \mu \mathrm{~m}$ with hexane-AcOEt ($95: 5 \mathrm{v} / \mathrm{v}$) as eluent $\left(1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ gave the major (S)-isomer 34 as a solid, m.p. 129$130^{\circ} \mathrm{C}$ [Found: ($\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}$), 436.2491. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{4}$ requires $m / z, 436.2486] ;[x]_{\mathrm{D}}^{25}-0.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 1.08$ and 1.10 (each 3 H , each s, $2 \times \mathrm{Me}), 3.03$ and 3.11 (each 1 H , each d, each $J 13.0, \mathrm{CCH}_{2} \mathrm{Ph}$) and $5.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

Ethyl (2S)-2-Acetamido-2-methyl-3-phenylpropanoate 35.-A mixture of the above urethane $34(22.1 \mathrm{mg}, 0.041 \mathrm{mmol}), 18-$ crown-6 ($15 \mathrm{mg}, 0.056 \mathrm{mmol}$) and $\mathrm{KOH}(105 \mathrm{mg}, 1.944 \mathrm{mmol})$ was heated for 24 h under reflux. After evaporation under reduced pressure, the residue was taken up into MeOH and then acidified by addition of $10 \mathrm{w} / \mathrm{v} \% \mathrm{HCl}-\mathrm{MeOH}$. Filtration, followed by evaporation of the filtrate under reduced pressure, gave a residue, which was dissolved in anhydrous EtOH . After filtration, followed by evaporation under reduced pressure, the residue was treated with $5 \mathrm{w} / \mathrm{v} \% \mathrm{HCl}-\mathrm{EtOH}$. The mixture was heated for 15 h under reflux and then evaporated under reduced pressure. The residue was partitioned between CHCl_{3} and 10% aq. ammonia. The aq. phase was thoroughly extracted with CHCl_{3}. The combined organic phases were washed with brine, dried and evaporated to give a residue, which was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$. To the resulting mixture were added DMAP (100 mg) and acetic anhydride ($0.3 \mathrm{~cm}^{3}$), and the mixture was stirred for 14 h at room temperature. After addition of $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$, the mixture was washed successively with saturated aq. KHSO_{4}, saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purified by flash chromatography with hexane-AcOEt $(1: 1 \mathrm{v} / \mathrm{v})$ as eluent to give the (S)-amide 35 ($7.1 \mathrm{mg}, 68 \%$) as an oil; $[x]_{\mathrm{D}}^{27}+49.20^{\circ}\left(c \quad 0.56, \mathrm{CHCl}_{3}\right)$ \{for (R)-(-)-isomer: lit., ${ }^{13}$ $\left.[x]_{\mathrm{D}}-47.8^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)\right\}$.

Methyl (1R,3R,4S)-8-Phenyl-p-menthan-3-yl (R)- and (S)Benzyl(ethyl)malonates 36 and 37.-Method A. The mixture of half-esters $9(77 \mathrm{mg}, 0.24 \mathrm{mmol})$ was treated with benzyl bromide ($0.264 \mathrm{~cm}^{3}, 2.21 \mathrm{mmol}$) for 20 h at $-20^{\circ} \mathrm{C}$ under the same conditions as for compound 4. After chromatography on silica gel with hexane-AcOEt ($7: 3 \mathrm{v} / \mathrm{v}$) as eluent, the product in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was treated with excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$.

After having been stirred for 30 min , the mixture was evaporated under reduced pressure to give a residue, which was taken up into $\mathrm{Et}_{2} \mathrm{O}$. The solution was washed successively with saturated aq. KHSO_{4}, brine, saturated aq. NaHCO_{3} and brine, and dried, and evaporated under reduced pressure. The residue was subjected to silica gel column chromatography with hexane-AcOEt ($95: 5 \mathrm{v} / \mathrm{v}$) as eluent to afford the esters 36 and $37(63 \mathrm{mg}, 63 \%)$ as an oil (Found: $\mathrm{M}^{+}, 450.2793 . \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{4}$ requires M, 450.2770); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ MHz) $0.83-0.95(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}), 1.20$ and $1.26[3 \mathrm{H}(5.5: 3)$, each s, Me], 1.22 and 1.31 [$3 \mathrm{H}(5.5: 3$), each s, Me], 3.06 and 3.14 [1 H (3:5.5), each d, each $J 14.0, \mathrm{C} H \mathrm{HPh}$], 3.20 and 3.30 [1 H (5.5:3), each d, each $J 14.0, \mathrm{CH} H \mathrm{Ph}], 3.66$ and 3.72 [3 H (3:5.5), each s, OMe] and 4.89 and 4.90 [1 H (3:5.5), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.

Method B. The mixture of half-esters $24(5 \mathrm{mg}, 0.012 \mathrm{mmol})$ was treated with ethyl iodide ($0.012 \mathrm{~cm}^{3}, 0.151 \mathrm{mmol}$) for 20 h at $-20^{\circ} \mathrm{C}$ as above and the product was similarly converted into the methyl esters 36 and $37(3.3 \mathrm{mg}, 60 \%)$ as an oil; $\delta_{\mathrm{H}}(500$ $\mathrm{MHz}) 0.83-0.95(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}), 1.20$ and $1.26[3 \mathrm{H}(3: 5)$, each s, Me], 1.22 and 1.31 [$3 \mathrm{H}(3: 5$), each s, Me], 3.06 and 3.14 [1 H (5:3), each d, each J 14.0, CH HPh], 3.20 and $3.30[1 \mathrm{H}$ (3:5), each d, each $J 14.0, \mathrm{CH} H \mathrm{Ph}], 3.66$ and 3.72 [$3 \mathrm{H}(5: 3)$, each s, OMe] and 4.89 and $4.90[1 \mathrm{H}(5: 3)$, each dt, each $J 4.5$ and $11.0,3-\mathrm{H}]$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl Hydrogen Allyl(ethyl)malonates 43 and 44.-The mixture of half-esters $9(271 \mathrm{mg}, 0.78$ mmol) was treated with allyl iodide ($0.8 \mathrm{~cm}^{3}, 8.83 \mathrm{mmol}$) for 15 h at -78 to $-50^{\circ} \mathrm{C}$ under the same conditions as for compound 4 and the product was purified by silica gel column chromatography. Elution with hexane-AcOEt (7:3 v/v) gave the mixture of diastereoisomeric acids 43 and 44 ($302 \mathrm{mg}, 99 \%$) as a syrup (Found: 72.0; $\mathrm{H}, 8.7 . \mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{4} \cdot 0.7 \mathrm{H}_{2} \mathrm{O}$ requires C , $72.25 ; \mathrm{H}, 8.9 \%) ;[\alpha]_{\mathrm{D}}^{22}-17.02^{\circ}\left(c 1.44, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3700-2100(\mathrm{OH})$ and 1725 and $1715(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}(500 \mathrm{MHz}) 0.73-$ $0.92(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}), 1.23$ and 1.34 (each 3 H , each s, $\left.\mathrm{CPh} \mathrm{Me}_{2}\right), 2.37-2.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{HCH}=\mathrm{CH}_{2}\right), 2.51-2.59(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH} \mathrm{CH}=\mathrm{CH}_{2}$), 4.86-4.94 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) and 7.14-7.34 (5 H , $\mathrm{m}, \mathrm{Ph}) ; m / z 386\left(\mathrm{M}^{+}\right)$.
The above product was converted, using $\mathrm{CH}_{2} \mathrm{~N}_{2}$ as usual, into the diastereoisomeric mixture of the corresponding methyl esters as an oil (Found: $\mathbf{M}^{+}, 400.2634 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4}$ requires M , $400.2614) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740$ and $1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ $0.81\left(3 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}_{2} \mathrm{Me}\right), 0.85(3 \mathrm{H}, \mathrm{d}, J 7.5,1-\mathrm{Me}), 1.22$ and 1.23 [$3 \mathrm{H}(1: 2.6)$, each $\mathrm{s}, \mathrm{Me}), 1.35$ and 1.38 [$3 \mathrm{H}(1: 2.6)$, each s, Me], 3.63 and 3.64 [$3 \mathrm{H}(1: 2.6)$, each s , OMe], 4.84 and 4.85 [$1 \mathrm{H}(1: 2.6$), each dt, each $J 4.5$ and $11.0,3-\mathrm{H}], 5.05-5.13(2 \mathrm{H}$, $\mathrm{m}, 2 \times$ olefinic H$)$ and $5.62-5.71(1 \mathrm{H}, \mathrm{m}$, olefinic H$)$.

4-Methyl 1-[(1R,3R,4S)-8-Phenyl-p-menthan-3-yl] (2'S)-2'-Allyl-2'-ethylbutanedioates 45--To a stirred solution of $(\mathrm{COCl})_{2}\left(0.43 \mathrm{~cm}^{3}, 4.93 \mathrm{mmol}\right)$ in dry benzene $\left(15 \mathrm{~cm}^{3}\right)$ were added a solution of the acids 43 and 44 ($798 \mathrm{mg}, 2.07 \mathrm{mmol}$) in dry benzene ($5 \mathrm{~cm}^{3}$) and pyridine ($0.20 \mathrm{~cm}^{3}, 2.48 \mathrm{mmol}$), and the resulting mixture was stirred for 5.5 h at room temperature. Filtration through Celite, followed by evaporation of the filtrate under reduced pressure, gave the acid chloride as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1810$ and $1740(\mathrm{C}=\mathrm{O})$, which was directly used in the following reaction.
To a solution of the above product in dry benzene $\left(8 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was slowly added an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ and for 9 h at room temperature. Evaporation of solvents and the reagent gave the crude diazo ketone as a yellowish oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2110$ $(\mathrm{N} \equiv \mathrm{N})$ and 1720 and $1640(\mathrm{C}=\mathrm{O})$, which was subjected to the next reaction without purification.
A solution of the above product in $\mathrm{MeOH}\left(80 \mathrm{~cm}^{3}\right)$ was
irradiated for 3 h through a Pyrex filter with a 400 W highpressure mercury lamp under ice cooling. After evaporation under reduced pressure, the residue was purified by chromatography on silica gel with hexane-AcOEt (99:1 v/v) as eluent to give the esters 45 and its epimer [$647 \mathrm{mg}, 76 \%$ from (43 and 44)] as an oil. HPLC separation on a $10 \times 250 \mathrm{~mm}$ column of Dynamax microsorb silica $5 \mu \mathrm{~m}$ with hexane-AcOEt ($98: 2$ v / v) as eluent ($4 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) gave the major isomer 45 as an oil (Found: C, $75.15 ; \mathrm{H}, 9.2 . \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.3 ; \mathrm{H}, 9.25 \%$); $[\alpha]_{\mathrm{D}}^{23}-4.85^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740$ and 1720 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{CH}_{2} M e\right), 0.86(3 \mathrm{H}, \mathrm{d}, J$ $6.0,1-\mathrm{Me}$), 1.23 and 1.38 (each 3 H , each s, $\mathrm{CPh} \mathrm{Me}_{2}$), 2.29 and 2.51 (each 1 H , each d, each $J 16.6, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 2.36 and 2.41 (each 1 H , each dd, each J 8.0 and $14.0, \mathrm{C} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.64 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.85(1 \mathrm{H}, \mathrm{dt}, J 4.0$ and $10.5,3-\mathrm{H}), 5.03-5.11$ ($2 \mathrm{H}, \mathrm{m}, 2 \times$ olefinic H), $5.63-5.72(1 \mathrm{H}, \mathrm{m}$, olefinic H$)$ and 7.13-7.35 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z 414\left(\mathrm{M}^{+}\right)$.

4-Methyl 1-[(1R,3R,4S)-8-Phenyl-9-menthan-3-yl] (S)-2'-Ethyl-2'-(3-hydroxypropyl)butanedioate 46.-To a stirred, icecooled solution of $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}\left(0.30 \mathrm{~cm}^{3}, 3.0 \mathrm{mmol}\right)$ in dry THF ($5 \mathrm{~cm}^{3}$) was added cyclohexene ($0.9 \mathrm{~cm}^{3}, 8.89 \mathrm{mmol}$) and the mixture was stirred for 30 min . The resulting mixture was slowly added to a stirred, ice-cooled solution of the above olefin $45(108 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry THF ($5 \mathrm{~cm}^{3}$) and the mixture was stirred for a further 2 h at the same temperature. To the resulting mixture were successively added MeOH (2.5 $\left.\mathrm{cm}^{3}\right), 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NaOH}\left(0.4 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right)$ and 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.2 \mathrm{~cm}^{3}, 1.76 \mathrm{mmol}\right)$ and the mixture was stirred for 1 h at the same temperature. After evaporation under reduced pressure, the residue was partitioned between 5% aq. KHSO_{4} and $\mathrm{Et}_{2} \mathrm{O}$. The aq. layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were washed successively with saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was subjected to silica gel column chromatography with hexane-AcOEt (7:3 v/v) as eluent to give the alcohol $46(104 \mathrm{mg}, 92 \%)$ as an oil (Found: C, 69.7; $\mathrm{H}, 9.0 . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 9.3 \%$); $[\alpha]_{\mathrm{D}}^{26}$ $-13.18^{\circ}\left(c 1.55 \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and 1740 and $1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.80\left(3 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{Me}\right), 0.86$ ($3 \mathrm{H}, \mathrm{d}, J 6.6,1-\mathrm{Me}$), 1.22 and 1.36 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 2.32 and 2.51 (each 1 H , each d, each $J 15.8, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 3.51-3.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.85(1 \mathrm{H}, \mathrm{dt}$, $J 4.5$ and $11.0,3-\mathrm{H})$ and $7.12-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 432\left(\mathrm{M}^{+}\right)$.
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl \quad (2'S)-2'-Ethyl-5'-hyd-roxy-2'-(2-hydroxyethyl)pentanoate 47.-To a stirred, icecooled solution of the above ester $46(17.4 \mathrm{mg}, 0.04 \mathrm{mmol})$ in dry 1,2-dimethoxyethane (DME) $\left(2 \mathrm{~cm}^{3}\right)$ was added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ DIBAL in hexane $\left(0.12 \mathrm{~cm}^{3}, 0.12 \mathrm{mmol}\right)$, and the mixture was stirred for 3 h at the same temperature. After addition of water $\left(0.14 \mathrm{~cm}^{3}\right)$, the mixture was stirred for 1 h at room temperature, and then filtered through Celite. The filtrate was dried and evaporated under reduced pressure to give a residue, which was purified by silical gel column chromatography. Elution with benzene-acetone ($7: 3 \mathrm{v} / \mathrm{v}$) afforded the diol $47(11.7 \mathrm{mg}, 72 \%)$ as a syrup [Found: (M^{+}- phenylmenthyloxy), 173.1180 . $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{3}$ requires $\left.m / z, 173.1177\right] ;[\alpha]_{\mathrm{D}}^{24}-13.59^{\circ}$ (c 2.67 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} \quad 3450-3350(\mathrm{OH})$ and $1720(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.78\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.3$, $1-\mathrm{Me}$), 1.21 and 1.35 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 3.57-3.62 $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 4.86(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$ and $7.14-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(2S)-2-Ethyl-2-(3-hydroxypropyl)butan-4-olide 41.-To a solution of the diol $47(41.4 \mathrm{mg}, 0.102 \mathrm{mmol})$ and 18 -crown- 6 $(13.7 \mathrm{mg}, 0.052 \mathrm{mmol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$ was added $\mathrm{KO}_{2}(21.9$ $\mathrm{mg}, 0.308 \mathrm{mmol}$), and the mixture was stirred for 15 h at room
temperature, and was then poured into water. After acidification with $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, the aq. layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried and evaporated to give a residue, which was dissolved in saturated aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$ $(\times 2)$, then acidified with $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, and extracted thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were dried and evaporated under reduced pressure to give a residue, which was treated with 9% aq. $\mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$. After being heated for 10 h under reflux, the mixture was saturated with crystalline NaCl and was then thoroughly extracted with CHCl_{3}. The combined extracts were washed with brine, dried, and evaporated under reduced pressure to afford a residue, which was subjected to chromatography on silica gel. Elution with benzene-acetone ($4: 1 \mathrm{v} / \mathrm{v}$) gave the lactone $41(15.3 \mathrm{mg}, 87 \%$ from 47) as a syrup; $[x]_{\mathrm{D}}^{22}+1.85^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$, whose IR and NMR spectra were identical with those of the authentic compound. ${ }^{18}$

4-Methyl 1-[(1R,3R,4S)-8-Phenyl-p-menthan-3-yl] (2'S)-2'-(3-t-Butyldimethylsiloxy)-2'-ethylbutanedioate 51.-To a stirred, ice-cooled solution of the alcohol $46(64 \mathrm{mg}, 0.15 \mathrm{mmol})$ and DMAP ($7.4 \mathrm{mg}, 0.13 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ were added a solution of $\mathrm{TBDMSCl}(40 \mathrm{mg}, 0.26 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ $\left.\mathrm{cm}^{3}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.03 \mathrm{~cm}^{3}, 0.22 \mathrm{mmol}\right)$, and the mixture was stirred for 7 h at room temperture. After addition of benzene (30 cm^{3}), the resulting mixture was washed successively with 5% aq. KHSO_{4}, saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purifed by chromatography on silica gel with hexane-AcOEt (95:5 v/v) as eluent to afford the TBDMS ether $51(75 \mathrm{mg}, 93 \%)$ as an oil (Found: C, $69.05 ; \mathrm{H}, 9.85 . \mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{Si} \cdot 0.67 \mathrm{H}_{2} \mathrm{O}$ requires C , $68.8 ; \mathrm{H}, 9.7 \%) ;[x]_{\mathrm{D}}^{22}-11.09^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\max }($ neat $) / \mathrm{cm}^{-1}$ 1740 and $1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.89(9$ $\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 1.23 and 1.36 (each 3 H , each s, $\mathrm{CPh} M e_{2}$), 2.27 and 2.53 (each 1 H , each d, each $\left.J 15.9, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.44-3.69(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.85(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$ and $7.15-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 315\left(\mathrm{M}^{+}\right.$- phenylmenthyloxy).
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-5'-(t-Butyl-dimethylsiloxy)-2'-ethyl-2'-(2-hydroxyethyl)pentanoate 52.-To a stirred, ice-cooled solution of the above diester $51(89 \mathrm{mg}, 0.16$ mmol) in dry THF ($4 \mathrm{~cm}^{3}$) was slowly added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ DIBAL in hexane $\left(0.6 \mathrm{~cm}^{3}, 0.6 \mathrm{mmol}\right)$ and the mixture was stirred for 2 h at the same temperature. After addition of water $\left(0.6 \mathrm{~cm}^{3}\right)$, the mixture was further stirred for 1 h at room temperature and was then filtered through Celite. The filtrate was dried and evaporated under reduced pressure to give a residue, which was subjected to chromatography on silica gel. Elution with hexane-AcOEt ($4: 1 \mathrm{v} / \mathrm{v}$) afforded the alcohol 52 ($64 \mathrm{mg}, 76 \%$) as an oil [Found: (M^{+}- phenylmenthyloxy), 287.2039. $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.m / z, 287.2043\right] ;\left([\alpha]_{\mathrm{D}}^{22}-8.40^{\circ}\right.$ (c $\left.3.44, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450-3400(\mathrm{OH})$ and 1720 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}(90 \mathrm{MHz}) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right), 1.21$ and 1.35 (each 3 H , each s , $\mathrm{CPh} M e_{2}$), $3.46-3.73$ (4 H, $\left.2 \times \mathrm{CH}_{2} \mathrm{O}\right), 4.85(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and $11.0,3-\mathrm{H})$ and $7.14-7.36$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
(1R,3R,4S)-8-Phenyl-p-menthan-3-yl (2'S)-5'-(t-Butyldimethy lsilo $x y)-2^{\prime}-[(1,3$-dioxolan-2- $y l)$ methyl]-2'-ethylpentanoate 53.--To a stirred solution of $(\mathrm{COCl})_{2}\left(0.025 \mathrm{~cm}^{3}, 0.286 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added dimethyl sulphoxide (DMSO) $\left(0.025 \mathrm{~cm}^{3}, 0.353 \mathrm{mmol}\right)$ and the mixture was stirred for 15 min at $-78^{\circ} \mathrm{C}$. After addition of a solution of the above alcohol $52(64 \mathrm{mg}, 0.124 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(2 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, the mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$. After addition of $\mathrm{Et}_{3} \mathrm{~N}\left(0.08 \mathrm{~cm}^{3}, 0.575 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$, the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ to room
temperature. After dilution with hexane ($50 \mathrm{~cm}^{3}$), the resulting mixture was washed with brine, dried, and evaporated under reduced pressure to give the crude aldehyde as an oil, which was used in the following reaction without purification.

A mixture of the above product, CSA ($7.6 \mathrm{mg}, 0.033 \mathrm{mmol}$) and ethylene glycol ($0.035 \mathrm{~cm}^{3}, 0.63 \mathrm{mmol}$) in dry benzene (4 cm^{3}) was heated for 1.5 h under reflux in a Dean-Stark apparatus to remove any water formed. After dilution with benzene, the mixture was washed successively with saturated aq. NaHCO_{3} and brine, dried, and evaporated under reduced pressure. The residue was purified by chromatography on silica gel with hexane-AcOEt $(95: 5 \mathrm{v} / \mathrm{v})$ as eluent to afford the acetal 53 ($55 \mathrm{mg}, 76 \%$ from 52) as an oil [Found: (M^{+}phenylmenthyloxy), 329.2112. $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ requires m / z, $329.2148] ;[x]_{\mathrm{D}}^{23}-12.67^{\circ}\left(c 0.43, \mathrm{CHCl}_{3}\right): v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1716$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.80(3 \mathrm{H}, \mathrm{t}, J 7.6$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.1,1-\mathrm{Me}), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.24$ and 1.38 (each 3 H , each $\mathrm{s}, \mathrm{CPh} M e_{2}$), 3.53-3.61 ($2 \mathrm{H}, \mathrm{m}$, CH_{2} OTBDMS), 3.74-3.82 and 3.88-3.96 (each 2 H , each m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.82-4.90\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{CHO}_{2}\right)$ and 7.14 7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$)
(1S,4S)-6-Ethyl-2,8-dioxabicyclo[4.2.1]nonan-7-one 42.-To a solution of the above acetal $53(27.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 18 -crown-6 ($7.3 \mathrm{mg}, 0.028 \mathrm{mmol}$) in benzene ($3 \mathrm{~cm}^{3}$) was added $\mathrm{KO}_{2}(16.9 \mathrm{mg}, 0.238 \mathrm{mmol})$, and the mixture was heated for 2 days under reflux. After evaporation under reduced pressure, followed by addition of water $\left(5 \mathrm{~cm}^{3}\right)$, the resulting mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$, acidified with $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, and then thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were dried and evaporated under reduced pressure to give a residue, which was dissolved in THF ($1 \mathrm{~cm}^{3}$). To the mixture was added 70% $\mathrm{HClO}_{4}\left(0.15 \mathrm{~cm}^{3}, 1.04 \mathrm{mmol}\right)$ and the mixture was stirred for 12 h at room temperature and heated for 1 h under reflux. After evaporation under reduced pressure, the residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine, dried, and evaporated under reduced pressure to give a residue, which was subjected to chromatography on silica gel. Elution with hexane-AcOEt ($85: 5 \mathrm{v} / \mathrm{v}$) afforded the bicyclic lactone $42(4.9 \mathrm{mg}, 58 \%$ from 53$)$ as scales, m.p. $79-82^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}+8.16^{\circ}$ (c $0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) \{lit., ${ }^{17}$ m.p. $82-85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+6.7^{\circ}$ (c 0.42 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) : lit., ${ }^{18}$ m.p. $89-90^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}^{2}+5.4^{\circ}\left(c 1.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the spectral data of which were identical with those of the authentic compound.

Acknowledgements

We thank Professor K. Fuji of Kyoto University for generously supplying the spectral data of the lactone 41, and Professor S. Takano and Professor K. Ogasawara of Tohoku University for their kind gift of the bicyclic lactone 42. This work was supported in part by Grants from the Ministry of Education, Science and Culture of Japan. We are indebted to Mr. K. Kawamura, Miss K. Mushiake, Miss M. Inada, Mrs. A. Satoh and Miss N. Oikawa of this Institute for microanalysis, spectral measurements and the preparation of the manuscript.

References

1 M. Ihara. M. Takahashi, N. Taniguchi, K. Fukumoto and T. Kamatani, J. Chem. Soc., Chem. Commun., 1987, 619; M. Ihara, M.

Takahashi, N. Taniguchi, K. Yasui, K. Fukumoto and T. Kametani, J. Chem. Soc., Perkin Trans. I, 1989, 897.

2 M. Ihara, K. Yasui, N. Taniguchi, K. Fukumoto and T. Kametani, Tetrahedron Lett., 1988, 29, 4963; M. Ihara, K. Yasui, N. Taniguchi and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1990, 1469.
3 J. W. Scott, in Asymmetric Synthesis, eds. J. D. Morrison and J. W. Scott, Academic, New York, 1984, vol. 4, p. 1; B. Bosnich, Asymmetric Catalysis, Matinus Nijhoff, Dordrecht, 1986, p. 1.
4 S. Iriuchijima, K. Hasegawa and G. Tsuchihashi, Agric. Biol. Chem., 1982, 46, 1911; M. Schneider, N. Engel and H. Boensmann, Angew. Chem., Int. Ed. Engl., 1984, 23, 66; F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult and T. Norin, Tetrahedron Lett., 1985, 26, 4957; J. B. Jones, Tetrahedron, 1986, 42, 3351; T. Kitazume, T. Sato, T. Kobayashi and T. L. Jeng, J. Org. Chem., 1986, 51, 1003; M. Luyten, S. Müller, B. Herzog and R. Kesse, Helv. Chim. Acta, 1987, 70, 1250; K. Tsuji, Y. Terao and K. Achiwa, Tetrahedron Lett., 1989, 30, 6189.

5 K. Tomioka, K. Ando, Y. Takemasa and K. Koga, J. Am. Chem. Soc., 1984, 106, 2718; K. Fuji, M. Node, H. Nagasawa, Y. Naniwa and S. Terada, J. Am. Chem. Soc., 1986, 108, 3855; L. A. Paquette, J. P. Gilday and C. S. Ra, J. Am. Chem. Soc., 1987, 109, 6858; T. Harada, T. Hayashiya, I. Wada, N. Iwa-ake and A. Oku, J. Am. Chem. Soc., 1987, 109, 527; J. Hiratake, K. Shibata, N. Baba and J. Oda, Synthesis, 1988, 278.
6 Parts of this work have been published as preliminary communications: M. Ihara, M. Takahashi, H. Niitsuma, N. Taniguchi, K. Yasui and K. Fukumoto, J. Org. Chem., 1989, 54, 5413; M. Ihara, K. Yasui, N. Taniguchi and K. Tukumoto, Heterocycles, 1990, 31, 1017.
7 D. F. Taber, K. Raman and M. D. Gaul, J. Org. Chem., 1987, 52, 28.
8 E. J. Corey and H. E. Ensley, J. Am. Chem. Soc., 1975, 97, 6908; O. Ort, Org. Synth., 1987, 65, 203.
9 M. R. Cox, G. A. Ellestad, A. J. Hanaford, I. R. Wallwork, W. B. Whalley and B. Sjöberg, J. Chem. Soc., 1965, 7257.
10 S. Yamada, K. Ninomiya and T. Shioiri, Tetrahedron Lett., 1973, 2343; T. Shioiri, K. Ninomiya and S. Yamada, J. Am. Chem. Soc., 1972, 94, 6204
11 K. Achiwa and S. Yamada, Chem. Pharm. Bull., 1966, 14, 537.
12 J. A. Bajgrowicz, B. Cossec, R. Jacquier and Ph. Vallefont, Tetrahedron Lett., 1984, 25, 1789; U. Schöllkoph, Tetrahedron, 1983, 39, 2085.
13 G. I. Georg, X. Guan and J. Kant, Tetrahedron Lett., 1988, 29, 403.
14 W. H. Kruzinga, J. Bolster, R. M. Kellog, J. Kamphuis, W. H. J. Boesten, E. M. Meijer and H. E. Schoemaker, J. Org. Chem., 1988, 53, 1826; U. Schöllkoph, R. Tölle, E. Egert and M. Nieger, Liebigs Ann. Chem., 1987, 399; P. K. Paul, M. Sukumar, R. Bardi, A. M. Piazzesi, G. Valle, C. Toniolo and P. Balarmam, J. Am. Chem. Soc., 1986, 108, 6363; A. Fadel and J. Salaün, Tetrahedron Lett., 1987, 28, 2243; D. Seebach, J. D. Aebi, R. Naef and T. Weber, Helv. Chim. Acta, 1985 , 68, 144; R. Polt and D. Seebach, J. Am. Chem. Soc., 1989, 111, 2622; Y. Belokon, V. I. Bakhmutov, N. I. Chernoglazova, K. A. Kochetkov, S. V. Vitt, N. S. Garbalinskaya and V. M. Belikov, J. Chem. Soc., Perkin Trans. 1, 1988, 305; P. J. Sinclair, D. Zhai, J. Reibenspies and R. M. Williams, J. Am. Chem. Soc., 1986, 108, 1103; I. Ojima and X. Qiu, J. Am. Chem. Soc., 1987, 109, 6537; I. Ojima, T. Komata and X. Qiu, J. Am. Chem. Soc., 1990, 112, 770.

15 W. Oppolzer, C. Robbiani and K. Bätting, Helv. Chim. Acta, 1980, 63, 2015.
16 D. F. Taber, J. F. Mack, A. L. Rheingold and S. J. Gelb, J. Org. Chem., 1989, 54, 3831.
17 S. Takano, M. Yonaga, M. Morimoto and K. Ogasawara, J. Chem. Soc., Perkin Trans. 1, 1985, 305.
18 M. Node, H. Nagasawa and K. Fuji, J. Am. Chem. Soc., 1987, 109, 7901; J. Org. Chem., 1990, 55, 517.
19 J. San Filippo, Jr., L. J. Romano, C.-I. Chern and J. S. Valentine, J. Org. Chem., 1976, 41, 586.

Paper 0/04162I
Received 11th September 1990
Accepted 16th October 1990

[^0]: * A similar geometry was recently proposed for the product of Michael addition of the α-formyl ester derived from 2-(1-naphthyl)-3-borneol. ${ }^{16}$

